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Abstract

In this paper we approach the optimization of fluid tree networks by relaxing the usual one-flow regime assumption.

The pumping power requirement is minimized, under global volume constraint. Two types of constructal network

geometries are investigated: (i) the fluid users are distributed uniformly on a surface and, (ii) the fluid users are located

on the periphery of a disc-shaped area. In both cases, the flow regime in a given pipe of the network emerges as a result

of pumping power minimization. It is shown that the individual users� consumption and number of users dictate the

transition from one optimal flow regime configuration to another. Under certain circumstances, laminar and turbulent

flow regimes are present simultaneously in different pipes of an optimized network. The occurrence of turbulence at a

certain level of pipes in the optimal hierarchical networks always leads to turbulence in the higher levels of pipes. The

paper provides designers with basic tools for the conceptual design of fluid networks.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One fascinating feature of tree networks is that they

are not only present in engineering––i.e. man-made––

architectures (e.g., fluid [1–6] and power [7] supply, road

networks [1,8], cooling systems [1,9–11], wireless net-

works [12], etc.). They also occur abundantly in natural

flow systems (e.g., respiratory airways [1,13,14], vascu-

larized tissues [1,15,16], river basins and deltas

[1,17,18], rapid solidification [19], etc.). The profusion

of dendrites in nature and engineering, as well as their

apparent similarities, can be rationalized: tree shape is
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the result of global optimization, under global con-

straints [1].

In many of the networks mentioned above, what is

transported and delivered by the network is a fluid

(e.g., air, water, oil, blood). In that case, the pumping

power requirement is a good measure of the cost for

operating the network [2]. Our objective as network

designers is to minimize this operating cost, which is a

global parameter: the power dissipated in each pipe is

accounted for. We also face global constraints, in partic-

ular in terms of volume available for the network.

In most of the previous works on fluid network opti-

mization [1–6,13–16], a flow regime in the pipes of the

network is assumed a priori, before the optimization is

performed. For example, one may assume that in a par-

ticular network the fluid flow is laminar, and optimize
ed.
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Nomenclature

a cross-sectional area, m2

f friction factor

L length, m

_m mass flow rate, kg s�1

N number of fluid consumers

Re Reynolds number

S construct level
_W pumping power, J s�1

Greek symbols

l dynamic viscosity, kg m�1 s�1

m kinematic viscosity, m2 s�1

q density, kg m�3

Superscripts

� dimensionless parameters

l laminar regime

t turbulent regime

Subscripts

c critical

e pipe index

m minimized

opt optimal
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the network accordingly. If the flow in the network turns

out not to be laminar in the end (i.e. the flow is actually

turbulent) the network is not performing optimally,

which results in a larger operating cost [2]. This is why

it is useful to optimize the network without any flow re-

gime assumption. In other words, the flow regime in a

given pipe of the network is now an optimization result

rather than an assumption.

Another reason for pursuing this goal is that more

than one flow regime may be present simultaneously in

different pipes of the same network. For example, the

flow in the smaller pipes of the network may be laminar

and the one in the larger pipes turbulent. In that case,

the one-flow regime assumption fails. In this paper, we

relax the one-flow regime assumption: we describe how

to construct an optimal fluid distribution network with-

out any flow regime assumption. The flow regime in a

given pipe emerges as a result of optimization.
2. Problem formulation

Given a set of points, one of which is a fluid source,

we want to connect the points with pipes in order to

transport a fluid from the source to the other points.

Examples of such fluid distribution networks were listed

above in Section 1. The method presented in this paper

can be extended to the problem of connecting a set of

points with more than one source. The location of the

points is known, and so is the consumption––the fluid

mass flow rate required at every point.

Our objective is to transport the fluid with minimal

pumping power (electrical power consumption). Pump-

ing power as a ‘‘cost’’ function has been used in previous

work on fluid network optimization, and it has been

showed that in general it is not equivalent to minimizing

pressure drop [2]. In this paper, we neglect the junction

losses, and we suppose that in each pipe the flow is fully
developed. This means that the pipes under consider-

ation are long pipes––the pipe diameter-to-length ratio

is small. In that case, it is well known that the pumping

power for driving a mass flow rate _m in laminar regime is

[20,21]

_W ¼ 8pm _m2L
qa2

ð1Þ

Similar expressions for turbulent flow can be found in

the literature. For example, the following empirical rela-

tion for the friction factor is commonly used for a turbu-

lent fully developed flow in a smooth pipe [20,21]:

f ¼ 0:046
2 _m

lp1=2a1=2

� ��1=5

ð2Þ

Eq. (2) leads to the subsequent pumping power:

_W ¼ 0:006
l1=5 _m14=5L

q2a12=5
ð3Þ

Note that pumping power expressions for fully devel-

oped turbulent flow in rough pipes could also be consid-

ered. The method developed in this paper would apply,

but the resulting optimal network will depend on the

roughness of the walls. More importantly, the key con-

clusion will be the same: the flow regime in a pipe of

the network will emerge as an optimization result, not

an assumption.

The range of applicability of Eqs. (1) and (3) depends

essentially on the Reynolds number (Re) in the pipe,

which in terms of the mass flow rate and pipe cross-sec-

tional area reads as

Re ¼ 2 _m
pla1=2

ð4Þ

When Re in a pipe is smaller than the critical Reynolds

number (Rec) the flow is laminar. On the other hand, the

flow is turbulent when Re is larger than Rec. The value



Fig. 1. The geometric configuration of a two-pipe network.
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of the critical Reynolds number in circular cross-section

pipe is Rec � 2300 [20,21].

Two types of constraints are invoked. The first is the

total volume of the pipe network,

V ¼
X
e

aeLe ð5Þ

The summation is over all the pipes of the network.

Although other types of constraints can be invoked for

acknowledging the finiteness of the network, network

total volume constraint has been used with success in

the past [1–6,16]. The second type of constraint is the

law of mass conservation at each point. The fluid con-

sumption at a given point equals the difference between

the inlet and outlet mass flow rates at that point.

In conclusion the problem consists of finding the net-

work geometry that minimizes the total pumping power,

i.e. the summation of the power dissipated in each pipe.

Using Eqs. (1) and (3), the total pumping power, in a

dimensionless form, can be written as:

eW ¼
X
e lam

~m2
e
eLe

~a2
e

þ K
X
e turb

~m14=5
e

eLe

~a12=5
e

ð6Þ

where

eW ¼ W
8pqm3=Lref

~m ¼ _m
qmLref

ð7Þ

~a ¼ a

L2
ref

eL ¼ L
Lref

Re ¼ 2~m
p1=2~a

ð8Þ

Two summation terms are present on the right-hand side

of Eq. (6): the first summation is over the pipes with

laminar flow, and the second one is over the pipes with

turbulent flow. The dimensionless constant K is approx-

imately equal to 2 · 10�3. The reference lengthscale Lref

used to non-dimensionalize the variables can be any

lengthscale of interest for the problem treated. In dimen-

sionless form, the volume constraint, Eq. (5), becomes

eV ¼ V

L3
ref

¼
X
e

~aeeLe ð9Þ
3. The importance of relaxing the one-flow regime

assumption

To illustrate how and why we shall relax the one-flow

regime assumption, we begin with a simple example.

Consider the network of Fig. 1, which is an arrangement

of two pipes in series. The first pipe has a cross-sectional

area ~a1 and carries a mass flow rate 2~m0 from the point i

to the point j. As for the second pipe, its cross-sectional

area and mass flow rate are respectively ~a0 and ~m0. This

means that each one of the two sinks (points j and k) has

the same fluid consumption which is equal to ~m0. The

length of the two pipes is the same and is used as the ref-

erence lengthscale in the non-dimensionalization of the
variables. To respect the fully developed flow assump-

tion described in Section 2, the dimensionless volume

of the pipe network has to be small, hence eV � 1. Be-

cause of the volume constraint, Eq. (9), only one of ~a0

and ~a1 can vary independently. We chose ~a0 as the de-

gree of freedom (DOF), which means that ~a1 is obtained

by Eq. (9): ~a1 ¼ eV � ~a0.

Assuming that the flow in both pipes is laminar (case

I), the total pumping power, Eq. (6), for this particular

network becomes,

eW I ¼
4~m2

0

ðeV � ~a0Þ2
þ ~m2

0

~a2
0

ð10Þ

which can be minimized with respect to ~a0. The results of

the optimization are ~a0;opt ¼ 0:3865eV , ~a1;opt ¼ 0:6135eV ,eW I;m ¼ 17:32~m2
0
eV �2

. The assumption that the flow is

laminar in both pipes holds if the largest Reynolds num-

ber in the network is smaller than the critical Reynolds

number (Rec = 2300). In this case, the largest Re is in

the ~a1-pipe and in view of Eq. (4), this Reynolds number

is Re ¼ 2:88~m0
eV �1=2

. This means that the results pre-

sented in this paragraph (case I) are valid when ~m0 <

799eV 1=2
.

Similarly, assuming turbulent flow in the ~a1- and ~a0-

pipes (case II), one finds: ~a0;opt ¼ 0:3610eV , ~a1;opt ¼
0:6390eV , eW II;m ¼ 0:05749~m14=5

0
eV �12=5

. This result is valid

only when the smallest Reynolds number in the network

is larger than Rec, i.e. when ~m0 > 1225eV 1=2
. Note that

the optimal configuration (~a0;opt, ~a1;opt) and performance

( eW m) for case II are different than for case I.

There is a �gap�, where the one-flow regime assump-

tion fails: when the flow is laminar in the small ~a0-pipe

and turbulent in the large ~a1-pipe (case III). In view of

the previous discussion, this happens when 799eV 1=2
<

~m0 < 1225eV 1=2
. In that case the total pumping power is

eW III ¼
214=5K ~m14=5

0

ðeV � ~a0Þ12=5
þ ~m2

0

~a2
0

ð11Þ

The numerical minimization of Eq. (11) leads to the

optimal ~a0 shown in Fig. 2. The optimal geometry

(~a0;opt) is not a constant as in cases I and II, but varies

with ~m0=eV 1=2
. The same is true for the optimal ratio

~a0=~a1: it is a constant only when the flow is laminar



Fig. 3. The minimized pumping power as a function of the

mass flow rate ~m.

Fig. 4. The relative increase in pumping power when a network

optimized for a given flow regime configuration is used under

another flow regime configuration.

Fig. 2. The optimal ~a0 for case III (turbulent regime in the first

pipe, and laminar regime in the second pipe).
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(~a0=~a1 � 0:630) or turbulent (~a0=~a1 � 0:565) in all the

pipes. Otherwise, the optimal value of ~a0=~a1 depends

on ~m0=eV 1=2
. The minimized pumping power for the three

possible flow regime configurations is shown in Fig. 3.

Fig. 4 shows what happens when the actual flow re-

gime configuration in the network is different than the

one that has been assumed for performing the optimiza-

tion. Reported in the figure is the relative increase in

terms of pumping power if the �case I� or �case II�-opti-

mal architectures are used when the two-flow regime is
actually present (case III). The value of the power

requirement increase depends strongly on the network

under study (number, and position of the users, topol-

ogy, etc.). Even though the relative increase is relatively

weak in the present case (Fig. 4), a bad flow regime

assumption can lead to much larger power requirement

increase for more complex networks [2]. The key conclu-

sion is that a wrong flow regime assumption results is a

power requirement increase, which reinforces the impor-

tance of this paper. The flow regime in a given pipe of

the network should be delivered by the optimization,

not assumed. For the network of Fig. 1, the optimal flow

regime configuration depends on the value of ~m0=eV 1=2
:

when ~m0=eV 1=2
is smaller than 799, the flow is laminar

in both pipes (case I); when ~m0=eV 1=2
is larger than

1225 the flow is turbulent in both pipes (case II); when

799 < ~m0=eV 1=2
< 1225 the flow is turbulent in the first

pipe, and laminar in the second pipe. This conclusion

emerges as a result of optimization.
4. Constructal trees for fluid supply: elemental area

In the next sections, we generate a point-to-area fluid

distribution network with the users uniformly distrib-

uted on the area [1]. All the users have the same fluid

consumption ~m0. We proceed from the smallest to the

largest lengthscale, in line with the hierarchical optimi-

zation procedure described in Ref. [1] and called con-

structal design. From a construct level to the next one,

the number of fluid consumers is doubled. The number

of users can be increased until the whole area of interest

is covered.



Fig. 5. The assembling of the constructal fluid tree: (a) the elemental area, (b) the first construct, and (c) the second construct.
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We begin with the simple element shown in Fig. 5a.

One fluid user located in the center of a square of size

2L0 is connected to the periphery with a pipe of length

L0. The dimensionless pumping power required to drive

a laminar flow is

eW l ¼ ~m2
0

~a2
0

ð12Þ

where we have used L0 as the reference lengthscale. On

the other hand, when the flow regime is turbulent in

the pipe, the pumping power is

eW t ¼ K
~m14=5

0

~a12=5
0

ð13Þ

In Eqs. (12) and (13), the superscripts l and t mean that

the flow is respectively laminar or turbulent. We con-

sider that the volume of the elemental network, Eq.

(9), is fixed

eV 0 ¼ ~a0 ð14Þ

which leaves no degree of freedom to minimize the

pumping power requirement at this level. To respect

the fully developed flow assumption described in Section

2, the value of eV 0 has to be small, hence eV 0 � 1. The
transition from the laminar to the turbulent regime hap-

pens when the Reynolds number is equal to the critical

Reynolds number, that is at the following critical mass

flow rate

~mc;0 ¼
p1=2Rec

eV 1=2

0

2
ð15Þ

The reader can verify that Eq. (15) is equivalent, in an

order of magnitude sense, to intersecting Eqs. (12) and

(13). The subscript c refers to the critical value, while

the subscript 0 refers to the elemental (zeroth) level of

construct.
5. First construct

More interesting in terms of optimization opportuni-

ties is the network shown in Fig. 5b, where two elemen-

tal areas are assembled to form a first construct. Two

levels of pipes are now present. This means that four

flow regime configurations are feasible. We refer to these

possibilities as ll, tt, lt, and tl, where the first letter cor-

responds to the flow regime in the elemental pipes (~a0),

and the second letter refers to the flow regime in the first

construct pipe (~a1). With the help of Eq. (6), one can



Fig. 6. The optimal ðeV 0=eV 1Þltopt as a function of ~m0.
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write the pumping power requirement for each of the

four possible flow regime configurations

eW ll ¼ 2~m2
0eV 2

0

þ 4~m2
0

ðeV 1 � 2eV 0Þ2
ð16Þ

eW tt ¼ 2K ~m14=5
0eV 12=5

0

þ 214=5K ~m14=5
0

ðeV 1 � 2eV 0Þ12=5
ð17Þ

eW lt ¼ 2~m2
0eV 2

0

þ 214=5K ~m14=5
0

ðeV 1 � 2eV 0Þ12=5
ð18Þ

eW tl ¼ 2K ~m14=5
0eV 12=5

0

þ 4~m2
0

ðeV 1 � 2eV 0Þ2
ð19Þ

To write Eqs. (16)–(19), we invoked the finiteness of the

pipe assembly total volume,

eV 1 ¼ 2eV 0 þ ~a1 ð20Þ

where eV 0 < eV 1 � 1. For each flow regime configura-

tion, one can minimize the pumping power requirement

with respect to eV 0=eV 1. In other words, the designer

must decide what portion of the total available volume

for this first construct will serve the elemental channels,

and what portion will serve the new pipe.

For the ll-configuration, the minimization of Eq. (16)

yields

eV ll

0;opt ¼
eV 1

2 þ 22=3
~all

1;opt ¼
22=3

2 þ 22=3
eV 1 ð21Þ

eW ll

m ¼ ~m2
0eV 2

1

ð2 þ 22=3Þ3 ð22Þ

Eq. (21) is known as the Murray�s law [16]. The optimi-

zation results of Eqs. (21) and (22) are valid only when

the Reynolds number in the ~a1-pipe is smaller than

Rec, which reads as

~m0 < ~mc;1 ¼
p1=2Rec

25=3ð2 þ 22=3Þ1=2
eV 1=2

1 ð23Þ

We note the appearance of another critical mass flow

rate that is different from the one derived in Section 4,

Eq. (15). This new critical mass flow rate rules the

appearance of turbulence in the first construct pipe,

while Eq. (15) dictates the transition in the elemental

pipes.

The minimization of Eq. (17) in the tt-limit is also

straightforward. The results are:

eV tt

0;opt ¼
eV 1

2 þ 214=17
~att

1;opt ¼
214=17

2 þ 214=17
eV 1 ð24Þ

eW tt

m ¼ K ~m14=5
0eV 12=5

1

ð2 þ 214=17Þ17=5 ð25Þ
The tt-flow regime configuration is valid when the Rey-

nolds number in the ~a0-pipe is larger than Rec. This

means that the critical mass flow rate is the same as in

Eq. (15). The condition for Eqs. (24) and (25) to be valid

is therefore:

~m0 > ~mc;0 ¼
p1=2Rec

2ð2 þ 214=17Þ1=2
eV 1=2

1 ð26Þ

where we have replaced eV 0 in Eq. (15) by its optimal

value, Eq. (24). Comparing Eqs. (23) and (26) we note

that there is a gap between the ranges of applicability

of the ll- and tt-configurations. This gap is where the

two-regime configurations lie. We will show below that

an optimal tl-network cannot actually exist. Therefore,

the only optimal two-regime configuration possible

for the network of Fig. 5b is when the flow is laminar

in the ~a0-pipes, and turbulent in the ~a1-pipe (lt). The

optimal lt-network is obtained by minimizing Eq. (18),

which yields

ðeV 1 � 2eV lt

0;optÞ
17=5 ¼ 219=53K

5
~m4=5

0 ðeV lt

0;optÞ
3 ð27Þ

Eq. (27) can be solved numerically for obtaining eV lt

0;opt as

a function of ~m0. The result has been reported in Fig. 6.

The curve has been plotted in the range ~mc;0 > ~m0 > ~mc;1,

which is the range where the lt-regime is the optimal

configuration. In Fig. 7, the minimized pumping power

for the three possible flow regime configurations is

shown. The two critical mass flow rate values, Eqs.

(23) and (26), are indicated in the figure.

The only thing left is to prove that the tl-regime is not

a minimum pumping power configuration. To do so, we

take the derivative of Eq. (19) with respect to eV 0, set it

equal to zero, and obtain



Fig. 8. The optimal ðeV 0=eV 1Þtlopt as a function of ~m0.

Fig. 7. The minimized pumping power in the first construct as a

function of ~m0.
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ðeV 1 � 2eV tl

0;optÞ
3 ¼ 10

3K ~m4=5
0

ðeV tl

0;optÞ
17=5 ð28Þ

This equation has been solved numerically, and eV tl

0;opt is

presented in Fig. 8. Also shown in Fig. 8 are the corre-

sponding Reynolds numbers in the ~a0- and ~a1-pipes.

One observes that these Reynolds numbers are actually

incompatible with the assumptions of laminar flow in

the ~a1-pipe and turbulent flow in the ~a0-pipe. In other

words, the tl-regime is not an optimal flow regime con-

figuration. Optimal networks exhibit laminar flow in

the lower level pipes (smaller cross-sectional area), and
turbulent flow in the higher level pipes (larger cross-sec-

tional area).
6. Second and higher constructs

The second construct shown in Fig. 5c is an assembly

of two first constructs connected with a new pipe, the

cross-sectional area of which is ~a2, in such a way that

three levels of branching are present. Four flow regime

configurations are to be expected: lll, llt, ltt, and ttt.

We disregard the flow regime configurations where the

flow is laminar in the larger pipes, and turbulent in

the smaller ones for the reason described in Section 5.

The total volume of the pipe network at this level is:

eV 2 ¼ 2eV 1 þ 2~a2 ð29Þ

The new DOF for the second construct is eV 1=eV 2, i.e. the

amount of the total volume that is occupied by the pipes

in the first construct. When the flow is laminar in all the

pipes (lll), the pumping power requirement is

eW lll ¼ 2 eW ll

m þ 32~m2
0

ðeV 2=2 � eV 1Þ2
ð30Þ

where eW ll

m is delivered by Eq. (22), and is a function ofeV 1. The minimization of Eq. (30) leads to

eV lll

1;opt ¼
eV 2ð2 þ 22=3Þ

22 þ 25=3 þ 27=3

~alll
2;opt ¼

21=3 eV 2

2 þ 22=3 þ 24=3
ð31Þ

eW lll

m ¼ ~m2
0eV 2

2

ð22 þ 25=3 þ 27=3Þ3 ð32Þ

Eqs. (31) and (32) are valid as long as the Reynolds

number in the ~a2-pipe is smaller than the critical Rey-

nolds number, which means that the critical mass flow

rate is

~mc;2 ¼
p1=2 Rec

eV 1=2

2

217=6ð2 þ 22=3 þ 24=3Þ1=2
ð33Þ

For the llt- and ltt-regime, the total pumping power

requirement are respectively

eW llt ¼ 2 eW ll

m þ K
233=5 ~m14=5

0

ðeV 2=2 � eV 1Þ12=5
ð34Þ

eW ltt ¼ 2 eW lt

m þ K
233=5 ~m14=5

0

ðeV 2=2 � eV 1Þ12=5
ð35Þ

The results of the numerical minimization of Eqs. (34)

and (35) are reported in Fig. 9. Finally, for the network

in which the flow is turbulent in each pipe (ttt-regime),

the optimization leads to



Fig. 10. The critical mass flow rate for the appearance of

turbulence in the network as a function of the number of users

when the users are distributed uniformly on an area.

Fig. 9. The minimized pumping power and optimal eV 1=eV 2 for

the second construct.
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eV ttt

1;opt ¼
eV 2ð2 þ 214=17Þ

2ð2 þ 214=17 þ 228=17Þ

~attt
2;opt ¼

211=17 eV 2

2 þ 214=17 þ 228=17
ð36Þ

eW ttt

m ¼ K ~m14=5
0eV 12=5

2

217=5ð2 þ 214=5 þ 228=5Þ17=5 ð37Þ

The minimum pumping power requirement is plotted in

Fig. 9. The transitions from one flow regime configura-

tion to another are indicated with small circles. The opti-

mal eV 1;opt is also reported in Fig. 9 for the different flow

regime configurations. The minimized pumping power

requirement is a smooth function, which is not the case

for the optimal eV 1=eV 2. At the transition from one flow

regime configuration to another, one observes a discon-

tinuity––a jump from one optimal architecture to an-

other due to the flow regime changes within the network.

The procedure described above can be repeated for

higher order constructs. At each level of construct, two

lower level constructs are assembled, and connected with

a new pipe. For the sake of conciseness, we do not repeat

these steps here. Fig. 10 reports the evolution of the crit-

ical mass flow rate from one construct to another. S is

the construct level, i.e. the number of levels of branch-

ing. Because of the doubling of the fluid users at each

level, S is equal to log2N, where N is the total number

of fluid users. The upper curve in Fig. 10 corresponds

to ~mc;0, i.e. to the critical mass flow rate for the occur-

rence of turbulence at the elemental level. Therefore,

all the points above that curve are such that the flow

in the resulting network is turbulent in all the pipes.

The bottom curve is for ~mc;S , and dictates the occurrence
of turbulence in the largest pipe of the network––the ~aS-
pipe. The flow is laminar in all the pipes of the network

in the designs below that curve. The region between the

two curves is where the optimal network exhibits a two-

flow regime configuration. The optimal flow regime con-

figuration can be read directly from Fig. 10. It is worth

to note that the two-flow regime zone can actually be di-

vided into sub-zones, because in general there may be

more than one two-flow regime configuration. For

example, when S = 2, the two two-flow regimes llt and

ltt are present.
7. Fluid users distributed on the periphery of a

disc-shaped area

Another benchmark problem for fluid network opti-

mization [1–6] is when N fluid users are distributed uni-

formly on the periphery of a disc-shaped area, and the

source is located at the center of the circle, Fig. 11. Each

user has a fluid consumption equal to ~m0. The problem is

then to determine the optimal geometry (number of lev-

els of branching, location of the branching points, etc.)

when the flow regime configuration is unknown. The ra-

dius of the circle is used as the reference lengthscale to

non-dimensionalize the variables, Eqs. (7) and (8).

When no pairing is present, as in Fig. 11a, there are N

radial pipes with the same cross-sectional area ~a0. Each

pipe carries a mass flow rate ~m0. The dimensionless

length of the pipes is 1, because it is equal to the radius

of the circle. The total pumping power requirement

when the flow is laminar is,



Fig. 11. The geometric features of a dendritic tree where the fluid users are distributed on the periphery of a circle: (a) radial pipes

(S = 0), (b) one level of branching (S = 1), and (c) two levels of branching (S = 2).
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eW l ¼ N ~m2
0

~a2
0

ð38Þ

However, because of the network volume constraint,eV ¼ N~a0, we can rewrite Eq. (38) as

eW l ¼ N 3 ~m2
0eV 2

ð39Þ

Similarly, when the flow is turbulent the pumping power

reads as

eW t ¼ KN 17=5 ~m14=5
0eV 12=5

ð40Þ

There is no optimization opportunity for the geometry

shown in Fig. 11a. The pumping power requirement in-

creases with N, and decreases with eV . The transition

from laminar to turbulence flow occurs at the following

critical mass flow rate which is a function of N

~mc;0 ¼
Recp1=2 eV 1=2

2N 1=2
ð41Þ
8. One level of pairing

An optimization opportunity emerges in Fig. 11b,

where the network exhibits one level of branching: there

are N/2 outflows from the center that then split into N

pipes to reach the N fluid users. The total pipe network

volume is constrained, and is equal to

eV ¼ N~a0
eL0 þ

N
2
~a1
eL1 ð42Þ

The geometry of Fig. 11b is such that eL0 and eL1 can

both be expressed as a function of a, the angle between

two ~a0-pipes,

eL0 ¼
sinðp=NÞ
sinða=2Þ

eL1 ¼ cosðp=NÞ � sinðp=NÞ
tanða=2Þ ð43Þ

There are thus only two parameters that can vary inde-

pendently. We chose a and ~a0=~a1 as the DOFs. For dif-

ferent values of N, we can minimize the pumping power

requirement with respect to the two DOFs. This proce-
dure is repeated for the three possible flow regime con-

figurations: when the flow is laminar in both the ~a0-

and ~a1-pipes (ll), when the flow is turbulent in all the

pipes (tt), and when the flow is laminar in the ~a0-pipes

and turbulent in the ~a1-pipes (lt). The details for the

purely laminar and purely turbulent cases can be found

elsewhere [1,2]. For the ll-configuration, the optimal

parameters are

all
opt ¼ 74:9346� ~a0

~a1

� �ll

opt

¼ 2�2=3 ð44Þ

Those results are valid only for N P 5. Otherwise the

optimal parameters correspond to the radial pipes of

Section 7. Note that Eq. (44) corresponds to Murray�s
law [16]. The optimal parameters for the tt-regime are

att
opt ¼ 55:5302� ~a0

~a1

� �tt

opt

¼ 2�14=17 ð45Þ

for N P 7. For the two-flow regime configuration, the

pumping power requirement is

eW lt ¼ N ~m2
0
eL0

~a2
0

þ 29=5KN ~m14=5
0

eL1

~a12=5
1

ð46Þ

which can be minimized numerically with respect to the

two DOFs, ~a0=~a1, and a. The optimal parameters and

minimum pumping power are reported in Fig. 12.

Important is that ð~a0=~a1Þltopt and alt
opt depend on

~m0=eV 1=2
, which was not the case in the ll- and tt-regimes,

Eqs. (44) and (45).

The two critical mass flow rates are

~mc;0 ¼
p1=2Rec

eV 1=2

231=34N 1=2ðeL1;optðNÞ þ 23=17eL0;optðNÞÞ1=2
ð47Þ

~mc;1 ¼
p1=2Rec

eV 1=2

23=2N 1=2ðeL1;optðNÞ þ 21=3eL0;optðNÞÞ1=2
ð48Þ

When ~m0 is smaller than ~mc;1, the flow regime is laminar

in both levels of pipes. On the other hand, when ~m0 is

larger than ~mc;0, the flow regime is turbulent in both lev-

els of pipes. Finally, when ~m0 is between ~mc;1 and ~mc;0,

the flow is laminar in the ~a0-pipes and turbulent in the



Fig. 12. The optimal a, and ~a0=~a1 for the architecture of Fig. 11b.
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~a1-pipes. Note that Eq. (47) is different than Eq. (40). In

both cases though, the transition is a function of N.
9. Second and higher levels of pairing

It is possible to increase further the complexity of the

dendrite by increasing the number of levels of branching,

as in Fig. 11c where two levels of pairing are present.

The total pipe volume is

eV ¼ N~a0
eL0 þ

N
2
~a1
eL1 þ

N
4
~a2
eL2 ð49Þ

The lengths eL0, eL1, and eL2 are function of the angles a
and b,

eL0 ¼
sinðp=NÞ
sinða=2Þ

eL1 ¼
sinð2p=NÞ

sinðp � b=2Þ cosðp=NÞ � sinðp=NÞ
tanða=2Þ

� �
ð50Þ

eL2 ¼
sinð2p=N þ b=2Þ

sinðp � b=2Þ cosðp=NÞ � sinðp=NÞ
tanða=2Þ

� �
ð51Þ

There are four parameters that can vary independently.

We chose a; b; ~a0=~a1 and ~a1=~a2 as the DOFs. For differ-

ent values of N, the pumping power requirement can be

minimized with respect to the four DOFs. This proce-

dure can be repeated for the four possible flow regime

configurations: lll, llt, ltt, and ttt. The optimal parame-

ters are shown in Fig. 13, for N = 16.

In Fig. 14, the minimized pumping power require-

ment obtained with the three architectures of Fig. 11

(S = 0, 1, and 2, where S is the number of pairing levels)
is reported for N = 16. With that number of users, the

optimal architecture is the one with S = 2 for every val-

ues of ~m0. The optimal flow regime configurations are

indicated in the figure. As the value of ~m0 increases,

the optimal flow regime configuration changes from lll,

to llt, ltt, and finally ttt. The transitions for the other val-

ues of S are also indicated with small circles.

Fig. 15 illustrates the minimized pumping power

requirement for the case of 12 users (N = 12). The results

are reported for three numbers of branching levels

(S = 0, 1, 2). Note that there is no ttt optimal network

for N = 12. In other words, for high values of ~m0=eV 1=2
,

the ttt-optimal dendrite reduces to a tt-configuration

(only one level of pairing), which is why the curve for

S = 2 in Fig. 15 is absent for high values of ~m0=eV 1=2
.

The optimal number of branching (Sopt) changes with

the mass flow rate. For small mass flow rates

(~m0=eV 1=2
< 475), the optimal network has two levels of

pairing (Sopt = 2). For larger values of ~m0=eV 1=2
, the opti-

mal value of S is 1. As the value of ~m0 increases, the opti-

mal flow regime configuration changes from lll, to llt, lt,

and finally tt, as indicated in Fig. 15.

We reported in Fig. 16 the critical mass flow rates in

the optimal network as a function of N. As in Fig. 10 for

the network where the users are distributed uniformly

on a surface, there is a zone in the �design space� where

the flow is laminar or turbulent in all of the pipes. There

is also a zone in the �design space� where the optimal net-

work is such that the flow is laminar in the smaller pipes

and turbulent in the larger pipes. This zone is shadowed

in Fig. 16. The optimal complexity––i.e. the optimal

value of S––is not only a function of the number of users

as in Refs. [3,5,6,10]. The value of Sopt is now also a



Fig. 13. The optimal a, b, ~a0=~a1, and ~a1=~a2 for the architecture of Fig. 11c.

Fig. 14. The minimized pumping power requirement with the tree architectures of Fig. 11 (S = 0, 1, and 2) with 16 users.
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function of the individual user consumption. The opti-

mal flow regime configuration can be read directly from

Fig. 16.
10. Concluding remarks

The pumping power requirement for a fluid distribu-

tion network is usually minimized on the basis of a flow
regime assumption. In the present paper, we show that it

is possible to relax that assumption is such a way that

the flow regime in a given pipe of the network is a result

of optimization. A new feature of the networks opti-

mized with this approach is the possibility for both lam-

inar and turbulent regimes to coexist in different pipes of

the same network.

The approach has been applied to two types of con-

structal trees. The first one is a point-to-area network



Fig. 15. The minimized pumping power requirement with the tree architectures of Fig. 11 (S = 0, 1, and 2) with 12 users.

Fig. 16. The critical mass flow rate for the appearance of turbulence in the network as a function of the number of users when the users

are located on the periphery of a disc-shaped area.
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where the sinks are distributed uniformly on a surface.

The second type of tree network is obtained when the

sinks are distributed equidistantly on the periphery of

a disc-shaped area, and the source is located in the

center.
An important conclusion is that from one level of

branching to another, the emergence of turbulence is a

‘‘point of no return’’. When turbulence appears at a cer-

tain level, the flow in the higher levels of branching will

also be turbulent in the optimized constructal trees. This
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statement is equivalent to the impossibility of finding an

optimal tl-regime in Sections 5 and 8. The transition

from laminar to turbulent regime in the network––i.e.

the range of validity of the different flow regime config-

urations––is dictated by the total pipe volume con-

straint, number of users, and individual fluid users�
consumption.

For the two problems considered, we showed that the

flow is completely laminar or completely turbulent

throughout the whole network only in certain zones of

the �design space�, Figs. 10 and 16. There is also a zone

where the flow regime configuration is a combination

of laminar and turbulent regimes in different pipes of

the network. We can draw an analogy with the growing

of a boundary layer on a surface [20,21]: the two-flow re-

gime zone (the gray zone in Figs. 10 and 16) is akin to

the transition zone in the boundary layer, where the flow

is not completely laminar, and not completely turbulent.

A ‘‘transition zone’’ in the network emerges from the

minimization of the dissipated power principle even

though the turbulence model did not take into account

the transition-regime in a single pipe.

It is also worth to point out the similarity between the

results presented in this paper and the ones obtained in

Ref. [9], where a heat-generating area was cooled with

high thermal conductivity pathways. In Ref. [9], the

transitions were between ‘‘bulk’’ and ‘‘nano’’ heat trans-

fer regimes, depending on the thickness of the inserts.

The arranging of the distribution of flow leads to the

construction of internal structure––optimal flow archi-

tecture for maximal global performance subject to con-

straints. The flow regime configuration in the network

is an integral feature of the network structure, and there-

fore there is call for optimizing it.
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